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MINKOWSKI SPACES WITH EXTREMAL
DISTANCE FROM THE EUCLIDEAN SPACE

BY
V. D. MILMAN AND H. WOLFSON

ABSTRACT

It is proved that if the Banach-Mazur distance between an n-dimensional
Minkowski space B and /; satisfies d(B,I5) = cVn (for some constant ¢ >0 and
for big n) then B contains an A (¢ )-isomorphic copy of I} (for k ~ logloglog n}.
In the special case d(B,l3)= Vn, B contains an isometric copy of I* for
k ~logn.

Introduction

We recall that a Minkowski space is a finite dimensional, normed linear space
(i.e. a finite dimensional Banach space). The Banach-Mazur distance between
two n-dimensional Minkowski spaces B, and B, is defined as d = d(B,, B,) =
infr.s,~8,[| T ||| T7'll, where the infimum is taken over all isomorphisms from B,
onto B:. Actually p = logd is a metric on the space of n-dimensional Minkowski
spaces but it is more convenient to use d. Clearly d(B,, B,) = 1 and d(B,, B,) =1
if and only if B, and B: are isometric Minkowski spaces. If d(B,, B.)= 1+ ¢ we
will say that B, and B, are ¢-isometric spaces. F. John [11] proved, that the
distance from any n-dimensional Banach space B to [} is d(B,[3)= V'n. The
maximal distance is attained e.g. for two classical spaces [7 [Z:d(I7 [3)=
a(z, 5= Vn (see [8]). In this paper we will prove two main theorems:

THEOREM 1. For every positive integer k there is a positive integer n, such that
every n dimensional Banach space B, satisfying d(B,I3)= V'n, contains a
k-dimensional subspace E,C B, which is isometric to lt, Asymptotically (when
n 1 ©) we have the relation k(n)=[1/(2In12)]1n n.

Obviously this estimate is exact (up to the coefficient of In n) since /2 contains
an [} with k not greater than logn.
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THEOREM 2. For any positive integer k and for any positive constant ¢ >0
there is a positive integer n = n(k, c) and a positive constant ¢, = c¢,(c), such that
every n-dimensional Banach space B satisfying d(B,l;')zc\/; contains a
k-dimensional subspace E CB, such that d(E,I})= c,. Asymptotically k(n,c)
(n T ) is bounded from below by the function logloglog n.

RemaRrk. Theorem 2 is correct also when instead of the constant ¢ >0 we
take a slowly decreasing function c¢(n}—0 (n—>). Namely if c(n)=
(log log log n)°™” then, by Theorem 2, for every positive integer k and for every
£ >0 there exists n(k, g, c(n)) such that every n-dimensional space B, satisfying
dimB =n = n(k,¢,c(n)) and d(B,15)= c(n)Vn, contains a k-dimensional
subspace ¢-isometric to [f, We prove this result at the end of Appendix 2.

The following result is a trivial consequence of Theorem 2.

CorOLLARY 1. Let X be a super-reflexive infinite dimensional Banach space
(for definition of super-reflexivity see [9]). Define dx(n)= supéme-a{d(E, I3},
where the supremum is taken over all n-dimensional subspaces of X. Then

dx(n)=o0(Vn).

If we do not take into account the problem of the estimate on the dimension of
the subspace isomorphic to [}, then Theorem 2 claims only that an ndimensional
Banach space B satisfying d(B,[3)= cVn is of type’ not better than 1
(asymptotically when n —). In this connection it is interesting to notice that the
following result was obtained in [6]: if an n dimensional space B is of type p and
of cotype g, then d(B,l3)=cn*"*""% (¢ depends on the type and cotype
constants of B). It is easy to see that there is a gap between these two results and
that Theorem 2 gives an essentially stronger result (but only in the case when the
distance is close to Vn).

This article has two more contact points with the results in [6]. From the
results of [6], §2, it is easily seen, that if d(B, %)= o(V'n), then B contains a
k -dimensional (k = log n) subspace E, which is ¢-isometric to I3, and there is a
projection P:B — E such that | P||=< o(Vk). Besides if B does not contain
subspaces &-isometric to /7 (when m —x), then k = n* for some « >0. This
with Theorem 2 implies that if B contains no subspaces &-isometric to [T (for
some m — when n —) then there is a subspace E C B which is £-isometric to
I5 for k = n* (for some fixed a >0) and there is a projection P: B — E with
IPlI=o(Vk).

This result (without the estimate on k) was obtained by different methods (by
using the results of [1], [17]) by W. J. Davis and W. B. Johnson [3].

* For a detailed discussion of type and cotype see [17].
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Let us state a related open question: let E be a k -dimensional subspace of B
(dimB = n), d(E,13)=2 and let the best projection P:B —E have norm
[ P]| = ¢ Vk. Is it true that B contains a subspace 2-isomorphic to [T (m —w
when n —©) ?

The following question is another contact point with [6]: is it true that if the
conditions of Theorem 2 are satisfied, then B contains a subspace isomorphic to
12 (for some m —» when n->%), or B contains a complemented subspace
isomorphic to It (k — o when n —«)? From the results of [6] it is easily seen that
if the unit ball of B (dimB = n) has f(n) (n — 1)-dimensional faces, then the
dimension k of a subspace contained in B and 2-isomorphic to I} is not bigger
than ¢ In f(n). Hence, if Inin f(n)/In n —0, then B cannot be of finite cotype (by
[6]) and, by a theorem of Maurey and Pisier [17], B contains a subspace
isomorphic to I with m — o when n — . By duality we get that if ¢(n) is the
number of extreme points of the unit ball of an n-dimensional space B and
(Inln ¢(n))/Inn—0, then B contains a uniformly (when n — %) complemented
subspace, isomorphic to I} (k — © when n — ). It is not difficult to check that in
this case d (B, 15)= n*°®. (This observation is due to J. Lindenstrauss.)

B. Maurey [16] has shown that if (In ¢{n))/n — 0, then B contains a subspace
2-isomorphic to [ with k - when n —> . But in this case nothing is known
about the relative projection constants of subspaces isomorphic to I},

Let us state another important problem, which we formulate rather vaguely.

Let B be an n-dimensional Minkowski space satisfying d(B,[5)=d < Vn.
When is there no other space B’ satisfying d(B’,[3)=d(B,B")d(B,[3) and
dB',1))>d ?

If there is no such space B’ then Theorem 2 would follow trivially from
Theorem 1 and the estimate could be improved.

The proofs of Theorems 1 and 2 are based on two variational results: a
theorem of F. John ([11]) and a lemma of Larman and Mani (see [14]), which is
close in its spirit to the Dvoretzky-Rogers lemma ([4]). We quote these results,
but the lemma of Larman and Mani is sufficient only for the proof of Theorem 1.
In order to prove Theorem 2 we need an additional result which is an isomorphic
variant of the lemma of Larman and Mani. Our first proof of this generalization
was technically complicated. But afterwards B. Maurey gave an elegant proof of
a stronger result, which we will use here.

LemMma 0.1 (Maurey). Let E and B be Minkowski spaces, dimE = n,
d(E,l5)=d, E CB and dim B/E = k. Then there is an absolute constant b >0
such that
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d(B,17)=3d +2*

The proof of Maurey’s lemma is given in Appendix 1.
Another technical result, needed in the proof of Theorem 2, is the following:

THEOREM 3. Let L.(T, ) be the space of essentially bounded functions on a
set T with a probability measure uw(u(T)=1) and let A <>~ be a constant.
Suppose there are m functions {f(t), - -, fa (A} CLAT, w) with |[f .= A 1=Si =
m which are orthonormal in L (T, w). Then there are k functions (k ~loglogm)
fu(0), - -+, fi. (¢) such that span{f,, - -, fu} in Lo(T, u) norm is c,-isomorphic to I},
where ¢, depends only on A.

Our proof of Theorem 3 is complicated. W. B. Johnson showed us a
simplification of the proof which uses results of A. Brunel and L. Sucheston [1],
based on the combinatorial theorem of Ramsey. His proof gives, however, no
estimate of k(m). Therefore, in the main text we give the simple proof of
Johnson and in Appendix 2 we show a sketch of our first proof of the theorem.

We thank J. Lindenstrauss, for his active interest in our work resulting in the
above mentioned (belonging to B. Maurey and W. B. Johnson) simplifications of
the paper.

Proof of the main results

1. Our problem is to find an isometric (isomorphic) copy of [} in every
n-dimensional Banach space B, which satisfies the conditions of Theorem 1 (or
2). For this purpose it is enough to find unit vectors {n,, - - -, m} CS(B), where
S(B) is the surface of the unit ball of B, such that for any k-tuple of scalars
{ai}i-1s

(1.1)
(clli1 la;| =

Observe that if for every vector of signs & ={g = =1}5,, there exists a
functional f,, such that (| f, =1 and f.(n;) = &; (1 = j = k), then for every k-tuple
of scalars {a;};-, satisfying &a; =0,

zf a|=f. <]:1 am,> =

éam,vné Czi’ﬂ,‘,).

j=

k

Z a,njuéié:lfa,}.
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Thus, if for some set of unit vectors {n;};-, and for every choice of signs
€= (&)1 )= &}, then
span{n;};_, is isometric to I}, (Similarly, if for every choice of signs & = (g;)%-,
there exists a functional f., such that ||f. | <c, and {f.(n;)e; = ¢, > 0})_,, then
span{n,}f-, is ¢i/c, isomorphic to I}.)

So, our task is to find two such sets {n;}}-
purpose we use two variational propositions. One of them is due to F. John ([11],

the way the result is used here is discussed in [12]).

ProposiTioN 1.1. Let E be the ellipsoid of minimal volume containing the unit
ball of B. We can consider 5 as the Euclidean space generated by the unit ball E.
Then there exists a finite set of vectors {y;};_. in S(B) and positive scalars {A;}}-
(n=s=n(n+1)/2) satisfying:

@ [y ls=lylls=1,

b)) ZA=nA>0 (1=sj=y3),

() VxE€B, x = zf=lﬁi(x’)’i))’i’

(@ Nxl.=lxls=Valx],

((d) is a consequence of (a), (b) and (c)).

Substituting x =y, in (c) we can get A, =1 (1=j=35).

Proor oF THEOREM 1. Let x, € S(B) be a vector, where the minimum of the
I3 norm is attained. d(B,15)=Vn implies | xo/g=1/Vn. From Proposition
I.1(c) we get:

1=l = | S0 oy, = S0 l@mi=(4) (Sreonr)

(1.2)
= V| xolls = 1.

Hence, there is a constant ¢ >0 satisfying A= cA[?|(x0, ;)] (1=] =35).
Since 1/ s =2 A (x0, v, ), we get [(x,y;)]=1/n (1= =5).

The sign of y, (I J = s) in Proposition I.1(c) is insignificant, so we can choose
{y;};=1 to satisfy (xo,y,) = 1/n. Now, let x be any vector satisfying | x [ = 1 and
[ x fls=1/Vn. Since |(x,y;)|=1/n (1=j=s), there is a vector of signs & =
(5 = £1);-, satisfying n(x,y;)=¢ (1=j=s). Let B*3f(|fls-=1) be a
supporting functional to S(B) in x. Then f is also a supporting functional to

(1/Vn)E, since in x the minimum of I3 norm on S(B) is attained, and hence
f = nx. Every functional in the set {f|f = nx, x € M},where M = {x ||| x|ls, = 1;
lx ls=1/Vn}, defines a vector of signs {f(y,)}. In order to investigate the
properties of the set M we need a result of Larman and Mani ([14]).
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ProrosiTioN 1.2. Let B be an n-dimensional Banach space such that
d(B, l3)= d. Suppose that the unit ball of I3 is the Euclidean ball on which the
Banach—-Mazur distance is attained and | x|z Z|x |s=(1/d)| x |ls. For any
8 >0 there is a positive integer m = ([d /4],[8°d?/4]) such that there exist at least
m unit vectors {x;}i-, and m orthogonal vectors {e}~, satisfying:

@ lxls=1, fxfs=1/d=]e

() llei—xllz=8]x s

13

In the sequel we use this proposition with d =n'? and § = n'. Hence,
m=3in'".

By Propositions 1.1 and 1.2 we get a set of unit vectors (in B){y,;};-: and a set of
normalized functionals (in B *) {nx;}/~,, such that the matrix T = {n(x, y;)}iZ1"
has =1 as its entries.

It is more convenient to construct the subspace isometric to I in B*. As
d(B, l5)= d(B*,13) the result obtained for B * and the estimate on k (n) hold for
B too. We consider the B* norm as the conjugate norm of B induced by the
inner product (x, y), which is determined by the ellipsoid E. Hence in the same
n-dimensional linear space we have defined three norms: the B-norm, the
[3-norm and the conjugate B *-norm.

We show that there is a k-tuple of vectors {e;, - -, e} in B*, || e: ||s- = 1, which
is isometrically equivalent to the standard basis of I}. This k -tuple is chosen as a
subset of {nx;}i~,. The isometry is proved as it is explained at the beginning of
this section and the functionals over B *, {f.} are chosen as a subset of the {y, };_,.

Therefore we have to find a set of k indices (iy, - - -, i ) such that the set of sign
vectors {(n(x, y;));-1};-1 will contain all the possible 2 vectors of signs. Denote
by Ui the k x 2-dimensional matrix having all the possible 2 vectors of signs as
its columns. We want to find in the matrix T those rows and columns which
constitute the matrix U,.

Let R® be the s-dimensional vector space with the scalar product
(a,b)y=2j_.  Aabi(a = (ai, -, a,); b =(by, -, b)). By Proposition L1, for any
2, €13 (20, 2) = Z]i N(20, ;) (9, 22) = (21, 22) where 2= ((21,,)i-1), £2=
((z2, y;)i-1) € R". Thus the scalar product in R’ of two rows i,, i, in the matrix T
is equal to (nx;, nx;,). By Proposition 1.2, these vectors are ‘‘almost orthogonal’.
This will help us to solve the combinatorial problem of finding the indices
il, LN ik-

LemMA 1.3, Let {e}i; (m = n) be an orthogonal system in 13 and let f be a

linear functional. Then there are no more than t =1/e> vectors from {e},
satisfying
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(fe) Iz el|f sl e

g=1. It is clear that |f[;= 2" e (). If |f(e)|=
e>1/e?- 7| flis, which is a

5.

ProoF. Suppose || e
£ || f |z for more than ¢ vectors e, we will get || f
contradiction.

LemMma 1.4.  Let {x;} be the vectors from Proposition 1.2. Then for every f € I3
O = f ) x (e +8)
except for at most [1/&?] vectors {x}.

Proor. By Proposition 1.2 and Lemma 1.3, except for at most [1/¢7] vectors
{x:}, we get

[ =1 f(x —e) + fle)| =N f lullxi — el + | f(e)]
=[fllol %l 8 + 1 flull e lloe = [1f ol % flo (e + 8).  Q.E.D.

Let {&=(0,---,0,1,0,---,0)}i-, be the standard basis of R". For a set of
indices I C[1,:--, s} define the functional f; € (R*)* by

[0, iZI
f’(gi)—{l, iel.

Thus f; (2., a&) = Zierhai. Then, by definition of the scalar product in R°,
nf[ ”12 = \/Eiel A,‘.

By Lemma 1.4 for every &, § all the vectors {x;} (except [1/£7?] of them) satisfy:

1/2
2 A
| fi(E)] = ‘ Z"i(xi’ yi) ( =@+ e)|fillllxle=(5+¢) _E’;— .
j€e
Setting u (I) = (ZicAi)/ n (the relative A-measure of the set I) we get:

(1.3) Ifi(E)] = (8 +e)Vud)

for all the vectors x;, except [1/&°] of them. By choosing 1/n'*=8<¢ =
V), we get

(1.4) |jEE,As(xs, y,-)l ) =)

for set I such that u(I)>36/n'".
On the other hand:

(1) SAN@)I= 5 S A =u().
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Let I” be the subset of I, where n(x;, y;)=1 for every j € I". Then (1.4) and
(1.5) imply that pu(I")>pu(I)/3. Similarly we get a subset I-CI, where
n(x,y;)= —1for every j€I and u(I")>u(I)/3.

Now we’ll describe the process of choice of the rows iy, - - -, i, in the matrix T
in order to get the matrix U..

Let {I,}*X, be pairwise disjoint subsets of [1,---,s], such that Uf:l I C
[1,--+, 5] and u ()= 27**". Suppose the vector of signs £, = (¢ V)%=, (¢’ =1 or
— 1) is the first row of the matrix Ui. Then we choose the appropriate subsets
I'"=1, (u,)=3-27%"") by the process which was described before. In the
choice of every such subset we may “lose”” 1/¢* = 36/ u (I;) rows of the matrix T,
hence to complete the choice of the first row of U, we need 2* -36/u (I))+ 1
rows in T and we can make this choice in each of the remaining m —
2% .36/ u () rows.

To get another vector of signs (i.e. the next row of the matrix U, ), we repeat
the same process for the subsets {I;,}’=,. If m is big enough, we can make k steps
(choosing in each step a row of U, ) and after it choose 2* columns in the matrix
T, which will give us all the possible vectors of signs in the 2* columns. On the
i-step we “lose” by Lemma 1.4, 2* -1/¢7=2" -36/(()'"" - 27**") rows of the
matrix T. Since rows which have to be eliminated in step i must not be
eliminated in step j > i the estimate on the number of rows of the matrix T is

(1.6) mz=k+2* -2"“§>73-12".

As mentioned abgve, the measure of the sets I,, must exceed 36/n
step. Thus on the last step k we have another restriction on k, namely:
w(I)Z G @) '=36/n'" 1t is easily seen that by taking m =in'” the last
condition is fulfilled when (1.6) holds. From the choice of ¢ and § we get
m = 4in'”. Hence, by (1.6) B* contains a subspace isometric to [, for every k
satisfying in'? = 12* - 73. Hence asymptotically (n - ») k ~(1/2In12)In n.

2 on each

2. Now we come to the proof of Theorem 2. Essentially the proof is based on
the same approach as the proof of Theorem 1. As in Theorem 1 it is convenient
to find a subspace of B* isomorphic to [1.

We have d(B *,l;‘)ic\/;l and we want to prove the existence of a c¢'-
isomorphic copy of I} in B* (for some constant ¢’ depending only on ¢). As
above we consider the B * norm as the conjugate norm of B induced by the inner
product (x,y), which is determined by the F. John ellipsoid E.

Now we use Lemma 0.1. As d(B*,[5)= ¢ Vn, there is a point z, € S(B*),

such that ||z,ls=c¢Vn Let E' be the orthogonal complement of z,, i.e.
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E'={z €B*|(z,z)=0}. By Lemma 0.1 d(E',I7)ZicVn (if n is big
enough), hence there is 2, € E', [ z,]5- = 1 and [ 2, ]|y = {¢ V' n. Now consider the
subspace E>={z € B*|(z,2.)=0, i = 1,2}. Again by Lemma 0.1 d(E* {57%) 2
1¢Vn, so there is z;€ E?, || z5]ls- =1 and || z5]s = ic V'n. Continuing in this

manner we can find m ~ b log, n points {z;}*, (b is the constant from Lemma
0.1). So we have proved:

Lemma 2.1, Letd(B* 15 =c \V'n. There arem ~ b log, n vectors {z.}/-,, such
that | z|ls-=1, (2,2)=0 i#j and ||z fzZic Vn.

Let Y ={y}i.,CS(B) be the set from Proposition 1.1. We normalize the
measure A of this set by defining a measure w : u(y;) = A; /n. Then (b) and (¢) of
Proposition 1.1 may be written as follows:

O [ =1 ad © 2= nGyydu0)

for every z € B.

Every z € B* (or z € B) can be considered as the function on Y, which
obtains the value (z, ;) for every y; € Y. Applying (c) to the vectors {z;}i~, from
Lemma 2.1 with respect to the corresponding L.(u) norm, we get

@ o o= [ 1620 y)Pa ()= Cetd2 &
It is obvious that
@2 Iz e = max |z, y) | = 12 foe =

(since ||y:lls =1 and |z |ls- = max{|(z,y)];]|y ]z = 1}). Observe that for the
proof of Theorem 2 it is enough to find k vectors {u:}i-1 CB*, | [|s- = 1, such
that for some constant a = a(c)>0 and for every k-tuple of scalars {a}{-,

K
2 a;l;
iz

(2.3) a;{a,fé

Lx(Y)

In such a case it is obvious that

15

and the subspace E = span{u}{_, CB* is isomorphic to [} with d(E, [f)=1/a.
The vectors {u;}¥-, and the inequality (2.3) will be obtained from Theorem 3,
which is rephrased here for our purposes.

=S

B* i=1
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Let pu be a probability measure defined on a set T (i.e. u(T)=1).

THEOREM 3'. Let ¢ >0 and ¢, > 0. For every positive integer k there exists a
positive integer m such that for every set of functions F={f}’L,CL.(T,p)
satisfying |fl.=1 (i=1,--m), |IflanZc >0 and |fi ~ f | Z ;>0
fori# jthere is a subset {f.," -, f..}, such that the differences {¢; = f,, — f,,_}j-1 in
L.(u) are 6/c? isomorphic to the standard basis of 1.

Proor. For i#j it is obvious that |[f —filliw ZIf —fillew = ¢ >0
(i,j =1,--+,m). Hence by the theorem of Brunel and Sucheston ([1]), given a
positive integer k there is a positive integer M, such that for every m = M there
exists a subset A = {f.," "+, fu JCF, such that the differences {¢;, = f,, — f,, .} /i
form an unconditional basis with constant less than 3 (in the L.(u) norm).
Observe that

190 = [ 1o01du =180 (16, 0) )

g%ﬁ |6 () Pdu ()= c2/2.

Now we make use of the fact that the embedding operator i : L(u)— L.(u)is
absolutely summing’ (see [15]). Hence

S la

l=l

2
1

IIA

2 Q; I “ Pb; ”L.(mé Slip

[Sas] =5 a

So, {do}f=: is 6/c] equivalent to the standard basis of [},

k
2 * o
=

Lo )

A

o;d; ”

Loo(ps)

RemMARK. In our case F ={z}~, where by Lemma 2.1 (z,2,)=0 (i# ).
Hence || z: = 2; |l = V2¢ = ¢,. In this case (i.e. when the functions {z.}/%, are
orthogonal) it is unnecessary to consider the differences ¢ =f, —f,._,
(j =1, -, k) and we can choose a subset A CF equivalent to the standard basis
of [, In Appendix 2 we present the first version of the proof of Theorem 3 which
does not use the result of Brunel and Sucheston and gives the estimate
k ~loglog m.

* Anoperator T : X — Y is absolutely summing (with norm 7(T) = ¢), if for every n and every
n-tuple {x,,---, x,} CX:

Sex

2|Tx |<c’5\ip 2|x*(x)|—cmax
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Appendix 1

Proor oF LEMMa 0.1 (Maurey). We use an equivalent definition of d(E, I3)
(see [2], [13]):

Let{e;}72, be an orthogonal basis in /5" and let {7, }i, be the standard basis of IT".
Let {a:}ix, be an n-tuple of scalars satisfying =2, a’=1. Suppose a, T are
mappings I7-%5 175 E such that a(e)=am (i=1,---,m)and | T||=1. Then
d(E, 13)=sup{mTa)}, where the supremum is taken over all m positive
integers and all operators @ and T such that E7,e’=1and [T|=1.

Here m,(Ta) is the 2-summing norm of the operator Ta (see [15]).

Let m >0, a« and T be such that I7->I75B, |[T|=1, 2%, a?=1 and
m(Ta)= d(B, I5*). Assume that we can find an operator U : I7— B such that
(U|=2, (T-U):IrT->ECB (ie. In(T-U)CE) and p =dim Ul =2%.
Then || T - U | =3 and since d(E, I5)=d it follows that

() (T - U)a) =3d.
On the other hand || U||=2 and by F. John ({11]) d(UI7, %)< Vp. Hence

i

(i) m(Ua)=2Vp=2.20%,
Inequalities (i) and (ii) imply
d(B, 13" = m(Ta) = m((T ~ U)a) + m(Ua) = 3d +2- 2,
So, in order to complete the proof we have to find the operator U.
Let f be the natural factorization mapping f: B — B/E. It is well known that
there exists a positive integer N = 2%, b > 0 such that there is a mapping g from
1Y onto B/E, g :1Y— BJE, satisfying ||g |=2 (N is taken as the number of

points of an g¢-net (for some £, >0) on the surface of the unit sphere of B/E).
Hence, we have the diagram

2 1T
S
Az// ,A, g
7
// i’
m—=- . LBJE

By the lifting property of I, ([15]) there are operators A,:I7— B and
A, 17— 17 such that fA, =g, [Ai[l=(gl and gA.=(T, [|A.|=|f T|=
IFITl=1.

" Let T: X — Y. Then 7,(T) is the smallest constant ¢, such that for every n and {x;}/-, C X the
inequality 27| Tx: | = ¢*supy«jzi 201 | x *(x,)[* holds.
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Let U= A, A, Then fT = fU, since the diagram is commutative, which means
that f(T — U)=0 and, hence, (T —U): l,— E. The other conditions on U hold
too, since dimUIT=dim!Y= N and |U||=||A,| |A.|=]g]=2.

Appendix 2

Proor oF THEOREM 3. For the sake of simplicitly we will prove the theorem
for the case of T =[0,1] and u-being the ordinary Lebesque measure on the
interval [0, 1]. Let a > 0. Assume that there are k functions {¢,}s-, C{f;}/*, such
that for every combination of signs £, = (g;(i) = *1)i_, there isaset J, u (J;)>0,
where {¢;(i)- ¢:(t) > a, Yt € J;};_,. Then for every k-tuple of scalars {a}i.,

aila,ﬂ§“ kla,-¢>.-

i=1 i=

§A};]ail

Lof0,1)

def
k =

and span{g; }'., = [¢:]i=: is A/a-isomorphic to I}, Therefore we have to find k
functions and 2* subsets {J;}’, of [0, 1] satisfying these conditions.

LEmMma A.1. Let {fi}iX, and A =1 be as defined in Theorem 3. Then given
0< a <1 there are m subsets {G, C[0, 1)}, such that G, = {t €[0,1]] |f.(1)|=
a} and pu(G\)z B for every i, where B = (1—-a?®)/(A” - a?).

The proof is obvious:

AG)Z [ IO du = [ 1f0Pde~[ 150 Fdu

z1-a’(l-u(G)).
Therefore u(G;)= (1 - a?)/(A*— a?).

Lemma A2. Let {Gi}i*, and B be as defined in Lemma A.1 and let
1> pu > 1/m be such that 1/ is an integer. Then there is an interval G CT = [0, 1]
of measure w, such that u(G N G,)/u(G)= B for at least n - m sets G..

Proor. Split T into 1/u = p pairwise disjoint intervals {F;}’-, of measure u
each. By Lemma A.1, u(G)) 2 B for every i, therefore given 1 =i, = m there is
1=j,=p such that u(F,N G,)/n(F,)= B(*). On the other hand, if no F,
satisfies the lemma, then (*) is satisfied by less than mu - p = m sets G,, which is
a contradiction.

Let 0<a <1 be a scalar and let B = (1 - a?)/(A?— a?). Take B/2*"'=u =
B/2* such that I/u is an integer. Denote by F = {f,}.,. Let the sets G; be as
defined in Lemma A.1. Then by Lemma A.2 there is an interval I, C T and there
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is a subset F'CF such that w(I,)=x = 8/2*" and u(G: N 1)/ u(l)= B for
every i such that f, € F', where |F'|Z u -m.

In the complement of the set I, we get u(G\I,)= B — B /2" and the density’
of the set G, in the set I\, is:

p(G\L) B(
p(I\IL)

By Lemma A.2 we find an interval I, CI\I,, u(l2)=p, and a subset F*CF'

(| F*| =z u’m) such that for every i, where f, € F”:

=)

After 2* steps we get 2* pairwise disjoint intervals of T : I, - -, I,« and a set
F.CMZ F' such that w(L)=pn (B/2"'=spu =B/2*) for 1=j=2* and for
every i such that f € F,

pUNG) B*, .
w@y -2 P (=/=2).

At the same time we have

(A1) [F,{zuzk(F@(%)Zk-m

Now we describe the choice of the first function ¢, € F;. Similarly to the proof
of Theorem 1 let U, denote the k x2*-dimensional matrix having all the
possible 2“ vectors of signs as its columns.

Step A. Let &, =(g,(j)= £ 1), be the first row of the matrix U,. Define for
every i

G.=LNG; and G“:{:EI][ |f,.(t)|;§_é‘1}

(evidently G.. D G.). For every i such that f, € F, we know that u (G, N 1,)=

31ﬂ(11)-
Hence

(A2) ,L:,, [f,(t)[dt>f0” [y dt =z aBip(l).

Let us consider a functional in.L,[0, 1] determined by the function

" The density of a set G in a set I is defined as w (G N I)/u(I).
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_ 1 tel,
W)_{O tZ 1,

and apply Lemma 1.3 to this functional and to the orthonormal system {f}7.
Since || ¢ ., = Vu(I,) we obtain

[ ro=]f o, s o[, s0a
(A3)

=

1 — -
cBan(ING)+ 8, V()
except for at most 1/82 functions {f.} from F,. By taking &, = }8,a Vi (I,) we get

(A4 [ fod|=5pena)

for every f; € F, except for at most 1/87 of them. The inequalities (A.2), (A.4)
and || f . = A imply that there are subsets J1;, and J1,, of G., (for every f, € F,

except 1/8% of them) with measures not less than ;- (Bia [/ A)u(I)) such that

. +1 telJi,
51gnf,-(t)={_1 tEJ:’Vv:'

We denote J,,,=J{, if &(1)=+1 and J,, =Ji, if &(1)=—1. In the

exceptional case when u (J ) exceeds ;u (I,) we will prefer, for purely technical

reasons, to denote by J,,, a measurable subset J,;, of the measure =3iu(l,).
The immediate consequence of Step A is

Step B. For each f, € F, except for at most 2* -1/87 of them we can find
subsets J,,,CG,; (1=j=2*) satisfying:

@) Gu Z)#(Jl.i,f)é%éfu (é%%f—ﬁ)

b) [fi()z4pia, VEET L (=1,---2"),

(c) signfi(t)=e.(j), t€J;.
We denote this set of functions by F,oCF,, |Fio|=|F,|—-2*/8%. Note that
8, = LBia Vmin,u (L), however, at this stage u(I}) = pu.

Step C. Assume that there is a function f, € F,, such that for every set J,,,
(1=j =2%) there are no more than y | F,| (we will use the number y = 1/2**")
functions from F, for which the density of the set G. in J,,,, is less than o8, (the
choice of the number o is determined by the equation o* = 3 and will be justified
at the end of the proof).
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In this case there is a subset F, CFy, | F,|= (1 -y -2*)-| F,| such that for each
feF,

“(G, ﬂ .Il‘.'",,')/ﬂ« (J]V.'U,,') = (TB] (1 é] é 2k).

def
Then f, is taken for ¢, and we return to Step A with the sets J,;,,= I instead
of I, with the set F, instead of F;, and we continue the process to find ¢,
corresponding to the second row of signs &, of the matrix U..

Step D. If the assumption of Step C is not true then there is a subset
J1:;sCGujo and a set H,CF,, |H,|Z vy |F,|, such that for each f. € H,,

p (G N T vigjo) 1 U vioio) < 0B
Consider I, = I,\J.,,, It is clear (see Step B (a)) that
2 1
S w=u o= (1-388u 1)

and for each f; € H, the density of the set G; in I, is increased to

= IJ’(G‘ N Izm) - Bll“" (Iio)_ qpl&('llviuviu) . Bl _ 00’@1 — _];E
b= ) = aU)-pUuy) - 1-8 B'[” = 9]’

where 8 =38,a/A. This discussion proves the first part of the following lemma.

LeEmMMa A3. Let 0<9<1, 0<o <1 and {J,CL CT}_, be a system of
measurable sets such that J,..CI\J, =L, (r=0,---,p~1) and u(J.) 2 6u (1)
for every r=0,---,p. Let GCT and for every r=0,---,p we denote
w(GNL)/u(l)=p,. Assume that u(GNJ)/pJ)SoB, (Vr=0,---,p-1).
Then the density B... of the set G in I,., is increased and

1-o
Bz (1+47=56).

Besides that, the number of the indicated sets p does not exceed

1
— (g L)

-0
l-0o 6(1-o)
log<1+—1_00)

A

p for small 9.

Proor. We also have to prove the estimate on p which follows trivially from
the condition B, =1 and the previous estimate
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1-
B Z (1 1o f)) Bo-
ReMArRk. If o* =3 we have k log(1-(1-0))= —log2and k(1 - o) =log2.
Therefore, substltutmg Bo by the number B, and 8 by the number }B.a/A in the
inequality for p, we obtain

1 1
log — log —~
(A.5) ps—Lk_ "B 34,
log2 6 log2 Ba

Thus, we are finishing Step D with a new set of functions H, and new sets {I,,}-,
(which at the first stage, all with the exception of I,;, = I,\J, ., coincide with I,).

Then we check, for the new set of functions H, and the new sets {I,,}’x,
whether the conditions of Step C are satisfied. If they are not, then we return to
the conditions of Step D. However, by Lemma A.3, Step D cannot be repeated
more than 2* - p times running since for every j Step D by Lemma A.3 takes
place not more than p times and the amount of the numbers j equals 2*. Thus,
after not more than 2* - p repetitions of Step D the conditions of Step C must
obtain for some subset F;CF, instead of F, where

|Fil 2z y™ 7| F

and for some sets {I® CI C[0,1]}, instead of {L}X,. At the same time the
measure of the sets I (j = 1, -,2") is decreased not more than (3)" times as a
result of the application of Step D and the execution of Step C leads to a possible

additional decrease of the measure of the set in question by the inequality of
Step B (a):

(A.6) wayz B2 (5 way= (5) 382

Besides, the execution of Step C means that we have chosen the function
¢ = f, € F and the sets {I,,,}/~, (as noted in Step C) and now we go on to the
execution of Step A (in order to find a function ¢,) with the density 8, of the sets
G (for f, € F,) in I where

Bz; O'Bl.

At the same time the set of functions F, which we can use at Step A has
decreased (see Step C) but

|F2lz (1-2y)|F:]z(1-2"y)y™ " | Fi|.
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To construct the k functions ¢, - - -, ¢« (corresponding to the k rows of the
matrix of signs U,) we have to go back to Step A k times. Thus the set of
functions F, is estimated at the last stage as follows:

(A7) |Fe |z (-2 (¥ ") | F.l.
The density
Boza'Bi=1p

and the measure of the sets {I*’ C[0, 1]}><, is then estimated by the application of
the inequality (A.6) k times:

wo w18 () 8= 08 ()8

The execution of Step B is possible then only in the case if | Fi | >2* /51 where 6,
depends on the measure min;u (I¥’) and by (A.8)

< P “““V“(Im)) (12 i) (éEA_Cl)(%)QB‘

Therefore, it follows from (A.7) that the fulfillment of the inequality

(A.9) (1=2%y)y> “ 7| F, !>2k(31 ) (gfx) (%)Hé—i

ensures the possibility to execute Step B and thus choose the last function
¢« € F.. Thus, we have constructed the sets {I*}2%,, u(I)>0 (j=1,---,2%)
such that

=q (Vt€I® onall j=1,---2%),

and for any combination of k signs £ = (e, = =1)f., there is a set I}’ =
I(£)CJ0,1] such thast for t € I(£)

sign ¢ (t) = .

As noted at the beginning of the proof this means that the subspace [¢:]i-i C
L.[0,1] is isomorphic to I} and the constant of the isomorphism of {¢;}} and the
natural basis /f does not exceed

(A.10) d=Ala=12A /aB..
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Let us now take y=1/2*" and a =% in Lemma A.l and recall that
Bi=B1R=31-a’)/(A*— a’)=b/A* (we are no longer interested in the values
of the absolute constants and denote all of them by b). Besides, from (A.5) we
obtain (by force of 8, Z o’8,=:18))

p<bA’logA -k.

Combining this inequality with (A.9) and the estimate | F,| from (A.1), we
obtain that it is possible to choose k ~Inilnm and by (A.10) the distance
d((o]} IH=d=bA"

ReEMARK. Applying the last estimates to Theorem 2 we obtain that there is
a k-dimensional (k ~ logloglog n) subspace which is b(1/c?)-isomorphic to [},
(Here A =4/c and m =log n, see Lemma 2.1 and (2.1).) It is well known that if
{x.}<2, is a normalized basic sequence, which is k’-equivalent to the standard
basis of [} then there is a normalized block basic sequence {z,}*., C[x;]*2,, which
is k-equivalent to the standard basis of I} (see [10] and [7)).

By repetitiously applying this last argument we obtain that if in Theorem 2 the
constant ¢ = c(n)= (logloglogn) " then for every £ >0 we can still get
k-dimensional subspaces of B € -isometric to I} such that k /% when n /”%. This
proves the Remark after Theorem 2 in the introduction.
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