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MINKOWSKI SPACES WITH E X T R E M A L  
D I S T A N C E  FROM THE E U C L I D E A N  SPACE 

BY 

V. D. MILMAN AND H. WOLFSON 

ABSTRACT 

It is proved that if the Banach-Mazur distance between an n-dimensional 
Minkowski space B and l~ satisfies d (Blip) = c' ,/n (for some constant c > 0 and 
for big n ) then B contains an A (c)-isomorphic copy of t ~ (for k - log log log n). 
In the special case d(Bfl~)= ",/n, B contains an isometric copy of l~ for 
k - log n. 

Introduction 

W e  recal l  that  a Minkowsk i  space  is a finite d imens iona l ,  n o r m e d  l inear  space 

(i.e. a finite d imens iona l  Banach  space) .  The  B a n a c h - M a z u r  d i s tance  be tween  

two n - d i m e n s i o n a l  Minkowsk i  spaces  B~ and B2 is def ined  as d = d(Bj,  B2)=  

infr:m~211 Tll II T - '  tt, where  the  inf imum is t aken  over  all i s omorph i sms  f rom B, 

on to  B2. Ac tua l ly  p = log d is a met r ic  on the  space  of  n - d i m e n s i o n a l  Minkowsk i  

spaces  but  it is more  conven ien t  to use d. Clear ly  d(B~, B2) => 1 and  d(B~, B2) = 1 
if and  only if B~ and B2 are  i somet r i c  Minkowsk i  spaces.  If d(B, ,  B2) _-< 1 + e we 

will say that  B~ and B2 are  e - i s o m e t r i c  spaces.  F. John [11] p roved ,  that  the 

d i s tance  f rom any n - d i m e n s i o n a l  Banach  space  B to l;' is d(B, l~)<= X/n. The  

max ima l  d i s tance  is a t t a ined  e.g. for two classical  spaces  l~, 12: d(lT, l~) = 

d(12, l;') = ~ / n  (see [8]). In this p a p e r  we will p rove  two main  theo rems :  

THEOREM 1. For every positive integer k there is a positive integer n, such that 

every n dimensional Banach space B, satisfying d(B,l~) = X/n, contains a 

k-dimensional subspace Eo C B, which is isometric to lf. Asymptotically (when 

n "~ o~) we have the relation k(n)>= [1/(21n 12)]ln n. 

Obvious ly  this e s t ima te  is exact  (up to the  coefficient  of In n)  s ince 12 conta ins  

an I~ with k not  g rea t e r  than log2n. 
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THEOREM 2. For any positive integer k and for any positive constant c >0 
there is a positive integer n = n(k, c) and a positive constant c~ = c~(c), such that 

every n-dimensional Banach space B satisfying d(B, l~)>-c~/n  contains a 

k-dimensional subspace E C B, such that d(E, l~) <-_ c,. Asymptotically k(n, c) 
(n ~ oo) is bounded from below by the function log log log n. 

REMARK. Theorem 2 is correct also when instead of the constant c > 0 we 

take a slowly decreasing function c(n)--~O (n--~o~). Namely if c ( n ) =  

(log log log n) o~,) then, by Theorem 2, for every positive integer k and for every 

e > 0 there exists n(k, e, c(n))such that every n-dimensional space B, satisfying 

d i m B  = n >= n(k ,e ,c (n ) )  and d(B,l~)>-_ c(n)~/n,  contains a k-dimensional 

subspace e-isometric to l~. We prove this result at the end of Appendix 2. 

The following result is a trivial consequence of Theorem 2. 

COROLLARY 1. Let X be a super-reflexive infinite dimensional Banach space 

(for definition of super-reflexivity see [9]). Define dx (n )= sup~mX=n{d(E, l~')}, 

where the supremum is taken over all n-dimensional subspaces of X. Then 

d×(n) = o(~/n). 

If we do not take into account the problem of the estimate on the dimension of 

the subspace isomorphic to l~, then Theorem 2 claims only that an ndimensional 

Banach space B satisfying d(B,l~)>=ck/n is of type'  not better than 1 

(asymptotically when n ---->o0). In this connection it is interesting to notice that the 

following result was obtained in [6]: if an n dimensional space B is of type p and 

of cotype q, then d(B,l~)<= cn 2°/p-'/q) (c depends on the type and cotype 

constants of B). It is easy to see that there is a gap between these two results and 

that Theorem 2 gives an essentially stronger result (but only in the case when the 

distance is close to ~/n). 

This article has two more contact points with the results in [6]. From the 

results of [6], §2, it is easily seen, that if d(B,l~)<=o(X/n), then B contains a 

k-dimensional (k => log n) subspace E, which is e-isometric to l~, and there is a 

projection P : B ~ E such that IIP II --< o(~/k). Besides if B does not contain 

subspaces e-isometric to l~' (when m ---*~), then k => n" for some a > 0. This 

with Theorem 2 implies that if B contains no subspaces e-isometric to 17 (for 

some m --~oo when n --~oo) then there is a subspace E CB which is e-isometric to 

12 k for k -> n ~ (for some fixed a > 0) and there is a projection P : B --~ E with 

II P If--< o (x/F). 
This result (without the estimate on k) was obtained by different methods (by 

using the results of [1], [17]) by W. J. Davis and W. B. Johnson [3]. 

* For a detailed discussion of type and cotype see [17]. 
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Let us state a related open question: let E be a k-dimensional subspace of B 

(d imB = n ) ,  d(E,l~)<=2 and let the best projection P:B---~E have norm 

IIPll ~ cX/k. Is it true that B contains a subspace 2-isomorphic to l~" ( m - - ~  

when n --,oo) ? 

The following question is another contact point with [6] : is it true that if the 

conditions of Theorem 2 are satisfied, then B contains a subspace isomorphic to 

12 (for some m--*~  when n---~oo), or B contains a complemented subspace 

isomorphic to l~ (k ---~ oo when n --.~ oo)? From the results of [6] it is easily seen that 

if the unit ball of B (dimB = n) has f (n)  (n - 1)-dimensional faces, then the 

dimension k of a subspace contained in B and 2-isomorphic to 12 k is not bigger 

than c In f(n). Hence, if In In f (n)/ ln n --~0, then B cannot be of finite cotype (by 

[6]) and, by a theorem of Maurey and Pisier [17], B contains a subspace 

isomorphic to l~ with m ---~ when n ---~ ~. By duality we get that if ~b(n) is the 

number of extreme points of the unit ball of an n-dimensional space B and 

(In In ~ (n ) ) / l n  n--~0, then B contains a uniformly (when n---~ ~) complemented 

subspace, isomorphic to l~ (k ---~ when n --~ ~). It is not difficult to check that in 

this case d (B, l~) --- n ~ oo). (This observation is due to J. Lindenstrauss.) 

B. Maurey [16] has shown that if (In ch(n))/n --~0, then B contains a subspace 

2-isomorphic to l~ with k ---~oo when n ----~w. But in this case nothing is known 

about the relative projection constants of subspaces isomorphic to l~. 

Let us state another  important problem, which we formulate rather vaguely. 

Let B be an n-dimensional Minkowski space satisfying d(B, l~)= d < X/n. 

When is there no other space B '  satisfying d(B',l~)= d(B,B')d(B,l~) and 

d(B', l~) > d ? 

If there is no such space B '  then Theorem 2 would follow trivially from 

Theorem 1 and the estimate could be improved. 

The proofs of Theorems 1 and 2 are based on two variational results: a 

theorem of F. John ([11D and a lemma of Larman and Mani (see [14]), which is 

close in its spirit to the Dvoretzky-Rogers  lemma ([4]). We quote these results, 

but the lemma of Larman and Mani is sufficient only for the proof of Theorem 1. 

In order to prove Theorem 2 we need an additional result which is an isomorphic 

variant of the lemma of Larman and Mani. Our first proof of this generalization 

was technically complicated. But afterwards B. Maurey gave an elegant proof of 

a stronger result, which we will use here. 

LEMMA 0.1 (Maurey). Let E and B be Minkowski spaces, d i m E  = n, 

d(E, l~)= d, E CB and d i m B / E  = k. Then there is an absolute constant b > 0  

such that 
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d (B, l~ *k) _-< 3d + 2 bk. 

The proof of Maurey's lemma is given in Appendix 1. 

Another technical result, needed in the proof of Theorem 2, is the following: 

THEOREM 3. Let L~( T, pt ) be the space of essentially bounded functions on a 

set T with a probability measure /z (/2. (T) = 1) and let A < ~ be a constant. 

Suppose there are m functions {fl(t),-" ", fm (t)} CL~(T,/z) with II f~ [l~ <= A,  1 <- i <-_ 

m which are orthonormal in L2(T, tz). Then there are k functions (k ~ log log m) 

f, ,(t) , . . . ,f ,~(t) such that span{f~,,...,f,~} in L~( T, pt ) norm is c l-isomorphic to l ~, 

where c) depends only on A.  

Our proof of Theorem 3 is complicated. W. B. Johnson showed us a 

simplification of the proof which uses results of A. Brunel and L. Sucheston [1], 

based on the combinatorial theorem of Ramsey. His proof gives, however, no 

estimate of k ( m ) .  Therefore, in the main text we give the simple proof of 

Johnson and in Appendix 2 we show a sketch of our first proof of the theorem. 

We thank J. Lindenstrauss, for his active interest in our work resulting in the 

above mentioned (belonging to B. Maurey and W. B. Johnson) simplifications of 

the paper. 

Proof of the main results 

1. Our problem is to find an isometric (isomorphic) copy of l~ in every 

n-dimensional Banach space B, which satisfies the conditions of Theorem 1 (or 

2). For this purpose it is enough to find unit vectors {r/l,"" ", r/k} CS(B),  where 

S ( B )  is the surface of the unit ball of B, such that for any k-tuple of scalars 

(1.1) 

[ 2 -- 2 Io, I 
j = l  j = l  

. : l  
) <=c2 lajl: • 

Observe that if for every vector of signs e = {ej = -+1}~=1, there exists a 

functional rE, such that IIfE II = 1 and f, (rh) = ej (1 _-< j < k), then for every k-tuple 
of scalars {ai}~=t satisfying eiaj >= O, 

21o,1- (  2)o,I 
j = !  j = l  j = l  j = ]  
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Thus, if for some set of unit vectors {r/j}~=, and for every choice of signs 

e = (ej)~'=l, there exists a functional f~ such that ]l f, II = 1 and {f~ (r / j )= e, }~=,, then 

span{r/j}~=l is isometric to I kl. (Similarly, if for every choice of signs e = (ej),k=l 
=> > k there exists a functional L, such that IILlI<c~ and {L(rtj)Ej c2 0}j=~, then 

span{'0j}~=l is cdc2 isomorphic to IL) 

So, our  task is to find two such sets {r/j}~=l and {L [ e = (ej = +- 1)~=,}. For  this 

purpose  we use two variational proposit ions.  One  of them is due to F. John ([11], 

the way the result is used here is discussed in [12]). 

PRoPosmoN 1.1. Let E be the ellipsoid of minimal volume containing the unit 

ball of B. We can consider l~ as the Euclidean space generated by the unit ball E. 

Then there exists a finite set of vectors {yj};-i in S(B) and positive scalars {hj}~=~ 

(n <-<_ s <= n(n + 1)/2) satisfying: 

(a) II Y, lIB = [I YJ II1  = 1, 
(b) E ; - , A i = n ; A j > 0  ( l = < j = s ) ,  

(c) Vx E B, x = Ey=l Aj(x, yi)y j, 

(d) [[ x 11,2 ~ ]l x liB =< V n  ]l x 1112 
((d) is a consequence of (a), (b) and (c)). 

Substituting x = y~ in (c) we can get Aj =< 1 (1 =<j =< s). 

PROOF OF THEOREM 1. Let x0 E S (B)  be a vector, where the minimum of the 

1~' norm is attained, d(B, l~)= ~/n  implies From Proposition 
I.l(c) we get: 

l=llx0][B = ,_~A,(xo, yi)y, =<~]A,[(x0, y , ) / < ( ~ A j ) =  ,,~=Ai(x,,,y,) 2) 
I /2{  ~ X I 1/2 

B j = l  j = l  
(1.2) 

= ~/n  [I x0 [11~' -- 1. 

Hence,  there is a constant  c > 0  satisfying A]/2= cA)/~t(xo, yi)l (l _-< j -< s ). 

Since 1/n = ]lx0[[~ = E;=,Aj(x0, yj) ~, we get l(x0, y~)l = 1/n (1---1 -< s). 
The  sign of y, (I _-<j -< s) in Proposit ion I.l(c) is insignificant, so we can choose 

{yj};=l to satisfy (x0, y , ) =  1/n. Now, let x be any vector  satisfying ]Ix [1, = 1 and 

]Jx II~= 1 /~ /n .  Since l(x, yj)l = 1/n ( l=<j  _-s) ,  there is a vector  of signs e = 

(ei = -+1)]=, satisfying n(x, yj)=ej ( l=<j=<s) .  Let B * 3 f ( I l f J l B . = l )  be a 

support ing functional to S(B) in x. Then f is also a support ing functional to 

( 1 / ~ / n ) E ,  since in x the minimum of l~ norm on S(B) is at tained, and hence 

f = nx. Every functional in the set {f Jr = nx, x ~ M}, where  M = {x III x I1-. = 1; 
IIx ]l~ = 1/~/n},  defines a vector  of signs {/(y~)}. In order  to investigate the 

propert ies  of the set M we need a result of Larman and Mani ([14]). 
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PROPOSITION 1.2. Let B be an n-dimensional Banach space such that 

d(B, l~) = d. Suppose that the unit ball of l~ is the Euclidean ball on which the 

Banach-Mazur  distance is attained and I[ x lIB >= It x tl,7 >= (1/ d )lt x lIB. For any 

> 0 there is a positive integer m = ( [d /4] ,  [82d2/4]) such that there exist at least 

m unit vectors {x~}?~l and m orthogonal vectors {e,}?=~ satisfying: 

(i) II x, II- = 1, II x, I1,~ = 1 / d  = II e, I0,~, 

(ii) t1 el - x, ll,~ < ~ 11 x, tt,~. 

In the sequel we use this proposi t ion with d = n ~/2 and 8 = n TM. Hence ,  
m = l n l / 2  

By Proposi t ions 1.1 and 1.2 we get a set of unit vectors (in B )  {yj}~-, and a set of 

normal ized  functionals (in B *) {nx~}?=l, such that the matrix T = {n(x,  yj)}~_---~iZi7 

has ---1 as its entries. 

It is more  convenient  to construct  the subspace isometric to l~' in B*.  As 

d (B, l~) = d(B *, IT) the result ob ta ined  for B * and the est imate  on k (n)  hold for 

B too. We consider  the B *  norm as the conjugate  norm of B induced by the 

inner product  (x, y),  which is de t e rmined  by the ellipsoid E. Hence  in the same 

n-d imens ional  l inear space we have defined three  norms: the B-no rm,  the 

l~-norm and the conjuga te  B * - n o r m .  

We show that there  is a k- tuple  of vectors  {e l , ' - - ,  ek} in B *, II e, liB. = 1, which 

is isometrically equivalent  to the s tandard  basis of l~'. This k- tuple  is chosen as a 

subset of {nxi}7=l. The  isometry  is p roved  as it is explained at the beginning of 

this section and the functionals over  B *, {f, } are chosen as a subset of the {y, }~= 1. 

The re fo r e  we have to find a set of k indices (il, • •., i~) such that the set of sign 

vectors  {(n(x,p, yj))~l}~=l will contain all the  possible 2 k vectors of signs. D e n o t e  

by Uk the k x 2 k-dimensional  matrix having all the possible 2 k vectors of signs as 

its columns.  We want  to find in the matrix T those rows and columns which 

const i tute  the matrix Uk. 

Let  R ~ be the s -dimensional  vector  space with the scalar product  

(a, b) = E~=, Alajbj(a = (a l ,""  ", a ,) ;  b = (bl , -"  ", b~)). By Proposi t ion 1.1, for  any 

zl, z2 E 1;' (Zl, z2) = 2;=1Aj(zl, yj)(yj, z~) = (£~, ~ )  where  £l = ((zl, yj)~=l), :~2 = 

((z2, yj);-,)  E R ' .  Thus  the scalar product  in R ~ of two rows i~, iz in the matrix T 

is equal to (nx,,, nx,~). By Proposi t ion 1.2, these vectors  are "a lmost  o r thogona l" .  

This will help us to solve the combinator ia l  p rob lem of finding the indices 

il," • ", ik. 

LEMMA 1.3. Let {e,}?_i (m <= n) be an orthogonal system in l~ and let f be a 

linear functional. Then there are no more than t <= 1/e 2 vectors from {e~}?=l 

satisfying 
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If(e,)l >= e Ilfll,~lle, lb. 

PROOF. Suppose lie, Ib = 1. It is clear that Ilfll~>-_~,~=,le, ff)l< If If(e,)l >- 

Ilfll,~ for more than t vectors e,, we will get ]]f[[~> 1/e ~. ~=llfll~, which is a 
contradiction. 

LEMMA 1.4. Let {x,} be the vectors from Proposition 1.2. Then for every f E 1~ 

t f(x,)l  <-- Ill IMJ x, II,~(~ + ~) 

except for at most [1/e 2] vectors {x,}. 

PROOF. By Proposition 1.2 and Lemma 1.3, except for at most [1/e 2] vectors 
{x,}, we get 

]f(xi)] = If(x, - ei)+f(ei) l  <= Ilfll,~llx,- e, [[,=+ t f(e,)/ 

<[Ifll,=llx, ll,=~+llfll,=l[e,[I,=~ =llfll,=llx, ll,=(e+~). Q.E.D. 

Let {~ =(0 , - - - ,0 ,1 ,0 , . - . ,0 )}~=,  be the standard basis of R ~. For a set of 
indices I C [ 1 , . - . , s ]  define the functional f, E (RS) * by 

0, i ~  I 
f'(s¢')= 1, t e l .  

Thus fi (E;=~ a ,~ )=  E,~A~a~. Then, by definition of the scalar product in R ~, 

II/, 11,2 = V x , ~ ,  A,. 
By Lemma 1.4 for every e, 8 all the vectors {x, } (except [ 1 /e  2] of them) satisfy: 

Setting ~(I)= (E~&)/n (the relative A-measure of the set I) we get: 

(1.3) I f,(2,)l--< (~ + e) x/~---~ 

for all the vectors x~, except [1/e z] of them. By choosing l / n  ~ =  8 < e = 
1 ~X/~-~,  we get 

(1.4) ] i~ A,(x,, yi) I 

for set I such that /~ ( I ) )  36/n ~j2. 
On the other hand: 

(1.5) 
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Let I ÷ be the subset o f / ,  where n(x,, yj) = 1 for every/ '  E I ÷. Then (1.4) and 

(1.5) imply that is(I+)>tz(I)/3. Similarly we get a subset I - c L  where 

n(x,,y,)= - 1 for every j E I -  and l~(I-)>~(I)/3. 
Now we'll describe the process of choice of the rows i~,- •., ik in the matrix T 

in order to get the matrix Uk. 
2 k 

Let {Ij}~ be pairwise disjoint subsets of [ 1 , . . . , s ] ,  such that I,.,li=,IjC 

[1 , - . . ,  s] and p. (/j) _-> 2 -~k +~. Suppose the vector of signs gt~ = (e~'~)]~ (e} l~ = 1 or 

- 1) is the first row of the matrix U~. Then we choose the appropriate subsets 

I;~"---I~., 0x(Ij.0_-> ~ • 2 -~k÷'~) by the process which was described before. In the 

choice of every such subset we may "lose" 1 / e 2 = 36//x (~) rows of the matrix T, 

hence to complete the choice of the first row of Uk we need 2 k . 36 / / z ( / j )+  1 

rows in T and we can make this choice in each of the remaining r n -  

2 k • 36/tz (L) rows. 

To get another vector of signs (i.e. the next row of the matrix Uk), we repeat 

the same process for the subsets {Ii.1}~l. If m is big enough, we can make k steps 

(choosing in each step a row of Uk) and after it choose 2 ~ columns in the matrix 

T, which will give us all the possible vectors of signs in the 2 ~ columns. On the 

/-step we "lose"  by Lemma 1.4, 2 ~ -1 / e  2~ = 2 ~ .36/((½)'- ' .2 -~k+~) rows of the 

matrix T. Since rows which have to be eliminated in step i must not be 

eliminated in step j > i the estimate on the number of rows of the matrix T is 

(1.6) m > k + 2  k .2  ~ + 1 ~ > 7 3 - 1 2  k. = 

As mentioned above, the measure of the sets It., must exceed 36/n'/2 on each 

step. Thus on the last step k we have another  restriction ~n k, namely: 

~(ij.~)>_ (~)k (~)~+1 >-_36/n":. It is easily seen that by taking m =¼n 1/2 the last 

condition is fulfilled when (1.6) holds. From the choice of e and ~ we get 
1 1/2 m = zn . Hence, by (1.6) B* contains a subspace isometric to I~, for every k 

satisfying kn~/Z_- > 12 ~ .73. Hence asymptotically (n ----~) k ~ (1/21n 12)In n. 

2. Now we come to the proof of Theorem 2. Essentially the proof is based on 

the same approach as the proof of Theorem 1. As in Theorem 1 it is convenient 

to find a subspace of B* isomorphic to l~. 

We have d(B*,l~)>=c~/n and we want to prove the existence of a c'- 

isomorphic copy of l~ in B* (for some constant c' depending only on c). As 

above we consider the B * norm as the conjugate norm of B induced by the inner 

product (x, y), which is determined by the F. John ellipsoid E. 

Now we use Lemma 0.1. As d(B*,l'~) >- c~v/n, there is a point z~ E S(B*), 
such that IIZlll,~>=cX/n. Let E 1 be the orthogonal complement of z~, i.e. 
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E'=-{zEB*[(Zl ,  Z)=O}. By Lemma  0.1 d(E',lT-~)>=¼cX/n (if n is big 

enough),  hence there  is z2 E E ' ,  [[ z2 lIB- = 1 and I[ z2 I[,7 => ¼ c X/n. Now consider  the 

subspace E 2 = {z E B *  I (z , z , )  = 0, i = 1,2}. Again by Lemma  0.1 d(E 2,1~-~)>-_ 
Ic X/n, so there is z 3 E E  ~, IIz311B. = 1 and IIz, Continuing in this 

manner  we can find m ~ b log2n points {z,}7'=~ (b is the constant  from L e m m a  

0.1). So we have proved:  

LEMMA 2.1. Letd(B*,l~)>=c X/n. Therearem ~ b  logznvectors {z,}?_-~,such 
that II z, liB" = 1, (z,, z,) = 0 i / j and II z, I1,~ >= ~ c X/n. 

Let  Y={y , }L ,CS(B)  be the set f rom Proposi t ion 1.1. We normalize the 

measure  3. of this set by defining a measure /x  :/x (y~) = a , / n .  Then  (b) and (c) of 

Proposit ion 1.1 may be writ ten as follows: 

(b) fr d / x ( y ) =  1 and (c) z = fr n(z,y)yd/x(y) 

for every z E B. 

Every  z E B *  (or z ~ B)  can be considered as the function on Y, which 

obtains the value (z, y,) for  every  y, E Y. Applying (c) to the vectors {z,}?=~ from 

L e m m a  2.1 with respect  to the corresponding L2(p.) norm, we get 

/ -  
( z , , z d >  c 2 

(2.1) IIz, IIL,~, = I(z,, y ) lZd~(y )  = n = 1 6 "  

It is obvious that 

def 

(2.2) II z, IILtr, =- max I(z,, y,)l =< II z, II-" = 1 
YI~Y 

(since 11 y, II. = 1 and 1[ z ]l.- = max {1 (z. y)I ;ll y 11. = 1}). Observe  that for  the 

proof  of T h e o r e m  2 it is enough to find k vectors {u,},k=, C B  *. II u, 118. = 1. such 

that for  some constant  a = a(c)> 0 and for every k- tuple  of scalars {,x,}f=~ 

k + 
~ ' ~  L ~ ( Y )  " 

(2.3) a ~= I a, / =< ,=, o~,u, 

In such a case it is obvious that 

~,u, =< a,u,  _-< l a, l 
L ~ ( Y )  i = l  B*  i = l  

and the subspace E = span{u,}~=, C B *  is isomorphic  to 1, ~ with d(E, I~)_~ 1/a. 
The  vectors {u, ff=~ and the inequali ty (2.3) will be ob ta ined  from T h e o r e m  3, 

which is rephrased  here  for our  purposes.  
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Let ix be a probability measure defined on a set T (i.e. ~ ( T ) =  1). 

THEOREM 3'. Let c > 0 and c, > O. For every positive integer k there exists a 
positive integer m such that for every set of functions F={f~}7=ICL.(T,I~) 
satisfying 1[~ I1~_ < - 1 (i = 1 , . - . ,  m),  ttf~ I[c2tr.,,) => c > 0  and [tfi - fJ  IIc2~,) >- ci > 0  

for i ~ j there is a subset {~l, " " ", f,2k }, such that the differences {4'~ = ~, - L~, ,}~=, in 
L=(tz) are 6/c~ isomorphic to the standard basis of l~. 

PROOF. For i ¢ j  it is obvious that 

(i,j = 1, ' .  ", m). Hence by the theorem of Brunel and Sucheston ([11), given a 

positive integer k there is a positive integer M, such that for every m => M there 

exists a subset A = {~, , ' . . , f~k}CF,  such that the differences {~bj = f , : , -  f~, ,}~=1 

form an uncondit ional  basis with constant less than 3 (in the L=(tz) norm). 

Observe that 

ll 4~i llc'(") = fr  ] 4~J(t)l dt~(t)>= ll 4~' ~ ' " '  f 14~'(t)l d~(t)  

>= ~ f~ I ~b(t)I:dtz(t)>= c21/2 • 

Now we make use of the fact that the embedding operator  i : L ~ ( / z ) ~  Ll(/z) is 

absolutely summing* (see [15]). Hence  

- Zla;l<- - I, ,I ___o,, 
d. / =  1 = j = Z  ± i = 1  L~(~ , )  

N 3 a;~; ~ 3 ]a; 1. 
j=1 t.~(,~ ) j=1 

So, {~bo}~=~ is 6/c~ equivalent t o  the standard basis of Ilk. 

REMARK. In our  case F={zi}?=l where by Lemma 2.1 (z~ ,z j )=0  ( i g j ) .  

Hence  I[ z, - zi X/ c -- c,. In this case (i.e. when the functions {z,}?--i are 

orthogonal)  it is unnecessary to consider the differences ~b~ = f ~ i - / , ~ , ,  

(j = 1,. •., k)  and we can choose a subset A C F equivalent to the s tandard basis 

of l~. In Appendix  2 we present the first version of the proof of Theorem 3 which 

does not use the result of Brunel  and Sucheston and gives the est imate 

k ~ log log m. 

* An operator  T : X ~ Y is absolutely summing  (with norm zr,(T) _-< c), if for every n and every 

n -mple  { x ~ , - - . , x , } C X :  

c max ~ elx~ ~llrx, ll<=c sup ~l/*(x,)l=- 
, = ]  I rx ' rJal  i ~J  , i = ± J  I l i ~ l  



Vol. 29, 1978 M I N K O W S K I  SPACES 123 

Appendix 1 

PROOF OF LEMMA 0.1 (Maurey). We use an equivalent definition of d(E,  l~) 
(see [2], [13]): 

Let {e~ }7=1 be an orthogonal basis in l g' and let {7, }7'=, be the standard basis of 17. 

Let {a,}7=1 be an n-tuple of scalars satisfying XT'=la~ <- 1. Suppose or, T are 

l~ ~ E  such that a ( e , ) =  a;0, (i = 1 , . - . ,  m) and II TI I~  1. Then mappings l T m  ~' • 

d(E,l~)=sup{Tr2(Ta)},  where the supremum is taken over all rn positive 

integers and all operators a and T such that XT=la~<= 1 and II Tll =< 1. 

Here 7r2(Ta) is the 2-summing norm of the operator Ta (see [15]).* 

Let m >0 ,  a and T be such that 17-~lT'--~B, IITII<I,  E,"=,ce2,<_-i and 

rr2(Ta ) = d(B, l "+k~ 2 j. Assume that we can find an operator U : l~'----~ B such that 
. r n  . . . . . . . ~  I IUII=2,  ( T - U )  I~ E C B  (i.e. I m ( T - U ) C E )  and p = d i m U l T < 2 b L  

Then II T -  U II =< 3 and since d(E, l~) = d it follows that 

(i) 7r2((T - U ) a )  _-< 3d. 

On the other hand I[ U[I < 2  and by F. John ([ l l  D d(Ul?,l~)<=X/p. Hence 

(ii) 7r2(Ut~) =< 2 ~/p_-< 2 . 2  ~bk 

Inequalities (i) and (ii) imply 

d ( B, l ~ + k) = 7r 2( To~ ) <= "rr :( ( T - U )o~ ) + rr 2( Ua ) <= 3 d + 2 . 2  ~bk . 

So, in order to complete the proof we have to find the operator U. 

Let f be the natural factorization mapping f : B ~ B /E .  It is well known that 

there exists a positive integer N = 2 b*, b > 0 such that there is a mapping g from 
17 onto B/E ,  g l T - - ,  B /E ,  satisfying Ilg [I =< 2 (N is taken as the number of 

points of an co-net (for some e0 > 0) on the surface of the unit sphere of B / E ) .  
Hence, we have the diagram 

~, I 1 ~ \  

A2 / / "  i A l X ~  / 
/ 

/ 
/ 

T 

17 
# 

>B > B / E  

By the lifting property of It ([15]) there are operators A , : I ~ - - * B  and 

az:l ' f---~l~ such that f A l = g ,  [Iall l=llgll  and g a 2 = f T ,  IIAzlI=IIf .  TII<= 

II f II IIT II <= 1. 

' Let T : X - - - ,  Y.  Then 7r2(T) is the smallest constant  c, such that for every n and {x~}7=l C X  the 
inequality E,"=,l[ Tx, 112<= z C SUpltx.ll~l X,=l IX *(X,)[ 2 holds. 
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Let U = A,A2.  Then f T  = fU, since the diagram is commutat ive ,  which means  

that f ( T -  U) = 0 and, hence,  ( T  - . U )  : l,--~ E. The  o ther  condit ions on U hold 

too, since dim Ul'f <= dim l~ = N and II ull<-lla,II  IIA211<=llg IJ =<2. 

Appendix 2 

PRooF OF THEOREM 3. For  the sake of simplicitly we will prove  the t heo rem 

for the case of T = [0, 1] and Ix-being the ordinary Lebesque  measure  on the 

interval [0, 1]. Let  a > 0. Assume that there  are k functions {,;b~}~=, C{fi}?=, such 

that for  every combinat ion of signs ij = (ei(i) = + 1)~=~ there  is a set Jj, IX (Jj) > 0, 

where  {e j ( i ) 'd) , ( t )> a, Vt  E Jj}~=,. Then  for every k- tuple  of scalars {a,}~=j 

a ~ l a ~ l  < a,49, <-A 2 1 a ,  I 
i = I , = l L ~ [ O ,  11 i = I 

d e f  

and span{~,}~=, =- [$~]~=~ is A / a q s o m o r p h i c  to 1~'. The re fo re  we have to find k 
functions and 2 k subsets {j/}2[, of [0, 1] satisfying these conditions. 

LEMMA A.1. Let {f}~%~ and A >- 1 be as defined in Theorem 3. Then given 

0 < a < 1 there are m subsets {G, C[0, 1])}7=1, such that G~ = {t E [0, 1][ Ifi(t)I >= 

a} and IX(G,)>=/3 for every i, where /3 = (1 - a2) / (A  2 -  a2). 

The  proof  is obvious:  

A2IX(G')=> fo, I fi(t)12 dix = f r  'f'(t)lZdix - f~,o 'f~(t)'2 dix 

> 1 - o~2(1 - IX(G,)). 

The re fo re  IX(G,) > (1 - a2) / (A  ~ - e~2). 

LEMMA A.2. Let {G~},%l and /3 be as defined in Lemma A.1 and let 

1 > ix > 1/m be such that 1~ix is an integer. Then there is an interval G C T = [0, 1] 

of measure ix, such that ix(G f 3 0 , ) / i x ( G )  >/3 for at least ix • m sets G,. 

PROOF. Split T into 1/ix = p pairwise disjoint intervals {F,}f=~ of measure  ix 

each. By L e m m a  A.I ,  ix(G,)  > /3  for every i, therefore  given 1 < ion m there  is 

l < j , ) < p  such that tx(Fj,,(-1G,,)/tx(Fj,,)>~(*). On the o ther  hand,  if no G, 

satisfies the lemma, then (*) is satisfied by less than mix • p = m sets G,, which is 

a contradict ion.  

Let  0 < a  < 1 be a scalar and le t /3  = ( 1 -  o ~ ) / ( A ~ -  c~2). Take/3/2~+'_-< IX =< 

/ 3 / U  such that 1/ix is an integer.  D e n o t e  by F = {f,}Ll. Let  the sets G, be as 

defined in L e m m a  A.1. Then  by L e m m a  A.2 there  is an interval I, C T and there  
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is a subset  F ~ C F  such that  /z(1,) = / z  =>/3/2 k+~ and p.(G, n I,)/l~(I,)>= ~ for  

every i such that  ~ E F% where  I F ' I _ -  > t~ "m. 

In the c o m p l e m e n t  of the set L we get I~(G~\L)>= [3 - ~ / 2  ~+~ and the density* 

of the set G~ in the set I\1, is: 

t~(G,\I,_) > 
= 

By L e m m a  A.2 we find an interval  I 2 C I \ I , ,  tz(I2) = / z ,  and a subset  F 2 C F  ' 

( ]F2[_-  > / z 2 m )  such that for  every i, where  [~ ~ F2: 

 (x2) -->/3 1 -  . 

Afte r  2 ~ steps we get 2 k pairwise disjoint  intervals of  T : L,  • • ", I2~ and a set 

F, c A ~ = , F  ' such that  ~ ( I j ) = ~  (/3 / U + '  _-< p. =< /3 /2 k) for  l_-<j=<2k and for  

every i such that  [, ~ F, 

def  

p.(Ij)  - 2 

At  the same  t ime we have  

(A.I) IF,  I_-> t~ I F I =  > . m .  

Now we descr ibe  the choice of the first function 4h ~ F,.  Similarly to the proof  

of T h e o r e m  ! let Uk deno te  the k x U - d i m e n s i o n a l  matrix having all the 

possible 2 k vectors  of signs as its columns.  

Let  g, = (e , ( j )  = + 1)~-, be  the first row of the matr ix  Uk. Def ine  for  Step A. 

every i 

and 

(evidently G,., D Gi, I). For  every i such that  f, E Fz we know that  /z (G, N L)--> 

H e n c e  

(A.2) f~ If,(t)ldt> fo [f,(t)ldt>=Ct~lp.(I,). 

Let us consider  a funct ional  in L2[0, 1] de t e rmined  by the function 

* The density of a set G in a set I is defined as ~(G n I)/tz(I). 
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10 t E L  
t0(t)= t~-Ii 

and apply Lemma 1.3 to this functional and to the orthonormal system {~}7. 

Since 11 ~ I1~ = X/# (I,) we obtain 

(A.3) 
1 

except for at most 1/8~ functions {~} from F,. By taking 6, = ~ , a  V ~  (I,) we get 

(A.4) I f.d, [~(t)dtl < l  = ~ t~l,w. (t~) 

for every ~ C F~ except for at most 1/6~ of them. The inequalities (A.2), (A.4) 

and t[: [1~ <- A imply that there are subsets J~-,i.l and J;.i., of Gi, l fro/" every f~ E F, 
except 1/6~ of them) with measures not less than 3" ((3,a /A  )tx(L) such that 

signf~(t) = { + 1 tEJ~.~.~ 
- 1  t E Ji,i,l " 

We denote J,.~., =J~.~., if e , (1)= +1 and Jt.~., =J~,~., if e , ( 1 ) = - 1 .  In the 
exceptional case when/x (Jl.~,l) exceeds _~/.L (10 we will prefer, for purely technical 
reasons, to denote by J~.,.~ a measurable subset J~.,.~ of the measure = ~ (1,). 

The immediate consequence of Step A is 

Step B. For each f, E F ,  except for at most 2 k .1 /6]  of them we can find 
subsets J,.,., C (~.j (1 =</' ~ 2 k) satisfying: 

I ~ U  - ( lfl,a.~_z~ 
(a) (~/x =>)/z ( J t . , 4 ) - ~  A /z .-->3 A 2k] ' 

> I (b) If,(t)[=~/3,c~, Vt~J, . , . j( i=l, .- . ,2~),  
(c) signf~(t)=ez(j),  tEJ,.,.j. 

We denote this set of functions by F~.oCF,, I F~.ol---->lFzl--2k/6{. Note that 

8, = ~/3~aV'mindz(Ij), however, at this stage /z (Ij) =-/z. 

Step C. Assume that there is a function f,,E F,.o such that for every set JL~,,.j 

(1 --<_ j <= 2 ~) there are no more than 3' [ FI 1 (we will use the number 3' = 1/2 TM) 
functions from F~ for which the density of the set G, in J,.,,,., is less than o-/3, (the 
choice of the number o- is determined by the equation o -~ = ½ and will be justified 

at the end of the proof). 
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In this case there is a subset F2 C F~, I F21 => (1 - 3' "2k)" t F~ I such that for each 

f, EF2 

/z(G, fqJL,,,.j)/.(J,.,,,.~)>=0-/3, (l_-<j=<2k). 

def  

Then f~, is taken for ~bi and we return to Step A with the sets JL~,,.j =- IJ 2~ instead 

of I t, with the set F2 instead of F~, and we continue the process to find ,;b2 

corresponding to the second row of signs g2 of the matrix Uk. 

Step D. If the assumption of Step C is not true then there is a subset 

J,,,,,4o C (~,,jo and a set HI CFI, I H, 1>= 3"tF~ t, such that for each f, E H,, 

. (G, f'1 J,.,o.io)/. (11.,o4o) < o'/31 • 

Consider I2./0 =/j,,IJl.,o.Jo. It is clear (see Step B (a)) that 

2 ( 1 ~2~_~ 
5 "(/j°)=<~(I2''°)-< 1-3 A ].(I;o) 

and for each ~ ~ Hi the density of the set 0~ in I2.o is increased to 

/32 -- ~ (a ,  fq I24o) > / 3 , .  (I,o) - o-/3,/z (J,,,o.jo) > ' =/31 1 + ~ 0 
. ( t 2 . ~ o )  = . ( g ) - . ( J , . , o . , )  = 

where 0 = _~/31o~ /A. This discussion proves the first part of the following lemma. 

LEMMA A.3. Let 0 < 0 < 1, 0 < 0- < 1 and {J, C L C T}~P=o be a system of 

measurable sets such that J,+, C I, t J, = I,÷~ (r = 0 , . . . ,  p - 1) a n d ,  (Jr,)_-> 0 ,  (L) 

for every r = O , . . . , p .  Let G C T  and for every r = O , . . . , p  we denote 

, (G A L ) / ,  (L) =/3,. Assume t h a t ,  (G ("1 j r , ) / ,  (Z) < 0-/3, (Mr = 0 , - . . ,  p - 1). 

Then the density /3.÷1 of the set G in L+, is increased and 

( 1 - o " )  
/3..._->/3. 1 +i-z-~O . 

Besides that, the number of the indicated sets p does not exceed 

1 

( )oo)  o )--- .og o - )   ors...a,O 

PROOF. We also have to prove the estimate on p which follows trivially from 

the condition /3p =< 1 and the previous estimate 
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1 - o" ~\P 

REMARK. If O "~ = ½ we have k log(1 - (1 - o')) = - log2 and k(1 - o-) - log2. 

Therefore,  substituting/30 by the number/3~ and 0 by the number ]/3~a/A in the 

inequality for p, we obtain 

(A.5) 

1 1 
log~-~ k log~[  3A 

P~< log2 O =  log2 /3~o~k" 

Thus, we are finishing Step D with a new set of functions HI and new sets {I2.j}~, 

(which at the first stage, all with the exception of I2.so = Ij,\J~.,,,.s,, coincide with Is ). 

Then we check, for the new set of functions //2 and the new sets {I2.j}]~ 

whether the conditions of Step C are satisfied. If they are not, then we return to 

the conditions of Step D. However,  by Lemma A.3, Step D cannot be repeated 

more than 2 k .p  times running since for every j Step D by Lemma A.3 takes 

place not more than p times and the amount  of the numbers j equals 2 k. Thus, 

after not more than 2 k -p repetitions of Step D the conditions of Step C must 

obtain for some subset F~ C G  instead of Fz where 

2k and for some sets {II2~C/j C[0,1]}~-~ instead of {Ij}j=~. At the same time the 

measure of the sets I~ 2~ 0' = 1 , . . . ,  2 k) is decreased not more than (~)~ times as a 

result of the application of Step D and the execution of Step C leads to a possible 

additional decrease of the measure of the set in question by the inequality of 

Step B (a): 

(A.6) /z(I~Z')=3 A /z(/J)--> . /3,a \3J 2 k 3 A " 

Besides, the execution of Step C means that we have chosen the function 

~bt = f , ,E F and the sets {l~.,,,.j}~, (as noted in Step C) and now we go on to the 

execution of Step A (in order to find a function ~b2) with the density/32 of the sets 

G, (for f, E F2) in I~ 2~ where 

&_-> 

At the same time the set of functions F2 which we can use at Step A has 

decreased (see Step C) but 

I F21>--_ (1-- 2ky)I F;I > (1-- 2k3,)T2~ P l Fz I. 
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To construct the k functions 4 ' , , '"  ", 4~ (corresponding to the k rows of the 

matrix of signs Uk) we have to go back to Step A k times. Thus the set of 

functions F~ is estimated at the last stage as follows: 

(A.7) 

The density 

I F, 1 _-> ( 1 -  2'7)~ (y2"P) k . IF,  I. 

/3, _-> o"/3, =~/3, 

and the measure of the sets {If  k) C [0, 1]}~'=, is then estimated by the application of 

the inequality (A.6) k times: 

,=, \3 A I 2 k " 

The execution of Step B is possible then only in the case if FFk I > 2k/62 where 6, 

depends on the measure minj/x(II k~) and by (A.8) 

• . .-2D-i7~ __ 
• = W - I  2 "  

Therefore, it follows from (A.7) that the fulfillment of the inequality 

(A.9) \/3,c~ / \ /3,~ / /3, 

ensures the possibility to execute Step B and thus choose the last function 

~bk E Fk. Thus, we have constructed the sets {i~k)}2~_~, /~ (i)~))> 0 (j = 1 , . . - ,  2 k) 

such that 

10,(t)1>/3~'~_->~/3,,~ ~'a (Vt~I~ k) on all j = l , - "  2 k) 
6 ' ' 

and for any combination of k signs g = (e~ = +-1)~=~ there is a set I l  k)= 

I(g)C[O, 1] such tha~ for t E I ( g )  

sign 4,~(t) = e,. 

As noted at the beginning of the proof this means that the subspace [d~]~=~ c 

L~[O, 1] is isomorphic to l~ and the constant of the isomorphism of {4~,}~ and the 

natural basis l~ does not exceed 

(A.10) d = A l a <= 12A l a B , .  
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Let us now take y = 1/2 k+' and a =½ in Lemma A.1 and recall that 

/3, = /3 /2  = ~(1 - a 2 ) / ( A  2 - a 2) ~- b / A  ~ (we are no longer interested in the values 

of the absolute constants and denote all of them by b). Besides, from (A.5) we 

obtain (by force of /3~ _>- tr/3, = ~/3~) 

p < ~ b A 3 1 o g A  . k .  

Combining this inequality with (A.9) and the estimate IF, t from (A.1), we 

obtain that it is possible to choose k - l n l n  m and by (A.10) the distance 
k k d([~b,] i , / i )=  d < b A  ~. 

REMARK. Applying the last estimates to Theorem 2 we obtain that there is 

a k-dimensional (k - l o g  log log n) subspace which is b(1/c3)- isomorphic  to l~. 

(Here A -- 4/c and m = log n, see Lemma 2.1 and (2.1).) It is well known that if 

{x~}~21 is a normalized basic sequence, which is K2-equivalent to the standard 
k 2 k 2 basis of l~ then there is a normalized block basic sequence (z,}~=~ C[x~]~ ,  which 

is K-equivalent to the standard basis of l~ (see [10] and [7]). 

By repetitiously applying this last argument we obtain that if in Theorem 2 the 

constant c = c ( n ) = ( l o g l o g l o g n ) ° " ~  then for every e > 0  we can still get 

k-dimensional subspaces of B e-isometric to l~ such that k/~¢¢ when n 7'~.  This 

proves the Remark after Theorem 2 in the introduction. 
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